Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan, ${ }^{\text {a }}$ Hong-Ping Xiao ${ }^{\text {b }}$ and Long-Guan Zhu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou, 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.043$
$w R$ factor $=0.106$
Data-to-parameter ratio $=11.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A cation-anion complex: 1,10-phenanthrolin-1-ium 5-sulfonatosalicylic acid

The title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$, consists of a 1,10-phenanthrolin-1-ium cation and a 5-sulfosalicylate anion. Hydrogen bonds link the anions into a one-dimensional chain. Furthermore, hydrogen bonds between the NH groups of 1,10 -phenanthrolin-1-ium cations and the sulfonate O atoms attach the cations to the one-dimensional chain.

Comment

Recently, some protonated 1,10-phenanthrolin-1-ium complexes have been reported and structurally characterized (Wang et al., 1999; Hensen et al., 1998; Hensen et al., 2000; Bonfim et al., 2003). We report here a cation-anion 1,10phenathroline complex, $(\mathrm{phenH})\left(\mathrm{H}_{2} \mathrm{ssal}\right)$ (phenH and $\mathrm{H}_{2} \mathrm{ssal}$ are the 1,10-phenanthrolin-1-ium cation and the 5sulfosalicylate anion, respectively), (I).

In the anion (Fig. 1 and Table 1), the carboxyl group is nearly coplanar with the benzene ring [the dihedral angle is 3.2 (2) \AA] and there is an intramolecular hydrogen bond involving the hydroxy group and carboxyl atom O2. Moreover, intermolecular hydrogen bonds between a sulfonate O atom and a carboxylate O atom connect the anions into a onedimensional chain (Fig. 2 and Table 2). In most reported cases, every sulfonate O atom is coordinated by two or three hydrogen bonds (Chertanova \& Pascard, 1996), while in the title complex two sulfonate O atoms (O4 and O5) accept only one hydrogen bond. Furthermore, in the title complex the cation is essentially planar and the protonated N atom forms a hydrogen bond with the sulfonate O atom (Fig. 3). The hydrogen-bonded $\mathrm{N} \cdots \mathrm{O}$ distance in (I), 2.780 (4) \AA, is significantly shorter than the mean N . . O distance $(2.946 \AA$) for hydrogen bonds of N -donors to sulfonate groups (Pirard et al., 1995; Haynes et al., 2004).

Experimental

An aqueous solution (20 ml) of 5 -sulfosalicylic acid dihydrate $(0.127 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $\mathrm{La}\left(\mathrm{NO}_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.199 \mathrm{~g}, 0.46 \mathrm{mmol})$ was

Received 26 November 2004 Accepted 23 December 2004 Online 8 January 2005

Figure 1
ORTEP-3 diagram of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2
View of the one-dimensional hydrogen bonded chain of 5-sulfosalicylate anions. Hydrogen bonds are shown as dashed lines.
mixed with a previously prepared solution of 1,10 -phenanthroline $(0.098 \mathrm{~g}, 0.50 \mathrm{mmol})$ in methanol-water $(10 \mathrm{ml}, 1: 9 \mathrm{v} / \mathrm{v})$. The resulting solution was stirred and refluxed for 5 h and then cooled to room temperature. After slow evaporation for two days, colorless blockshaped crystals of (I) were obtained.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$
$M_{r}=398.38$
Monoclinic, $P 2_{\perp}$
$a=7.0492(9) \AA$
$b=10.6716(14) \AA$
$c=11.7464(15) \AA$
$\beta=103.426(2)^{\circ} \AA$
$V=859.49(19) \AA^{3}$
$Z=2$
Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996)
$T_{\text {min }}=0.926, T_{\text {max }}=0.964$
4555 measured reflections

$$
\begin{aligned}
& M_{r}=398.38 \\
& \text { Monoclinic, } P 2_{\AA} \\
& a=7.0492(9) \AA \\
& b=10.6716(14) \AA \\
& c=11.7464(15) \AA \\
& \beta=103.426(2)^{\circ} \\
& V=859.49(19) \AA^{3} \\
& Z=2
\end{aligned}
$$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043\)
\(w R\left(F^{2}\right)=0.106\)
\(S=1.18\)
2938 reflections
262 parameters
H -atom parameters constrained
```

$D_{x}=1.539 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5405
$\theta=0.9-28.3^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.34 \times 0.31 \times 0.15 \mathrm{~mm}$

2938 independent reflections
2910 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-5 \rightarrow 8$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0565 P)^{2}\right. \\
& +0.1823 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1312 \text { Friedel pairs } \\
& \text { Flack parameter }=0.04(9)
\end{aligned}
$$

Figure 3
View of the cations hydrogen-bonded to the anion chain in (I). Hydrogen bonds are shown as dashed lines.

Table 1
Selected bond lengths (\AA).

S1-O6	$1.439(2)$	O1-C1	$1.306(4)$
S1-O4	$1.454(2)$	O2-C1	$1.216(4)$
S1-O5	$1.465(2)$	O3-C3	$1.344(4)$
S1-C6	$1.777(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(4)$	$1.79(4)$	$2.623(3)$	$168(5)$
O3-H3 \cdots O2	$0.85(3)$	$1.86(3)$	$2.587(4)$	$142(5)$
N1-H2 \cdots O	$0.82(4)$	$2.10(3)$	$2.780(4)$	$141(4)$

Symmetry code: (i) $2-x, y-\frac{1}{2}, 1-z$.
H atoms bonded to C atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent). H atoms bound to O and N atoms were located in a difference Fourier map and refined with restraints for $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-$ H distances $[0.85(1)$ and $0.82(1) \AA$ A], with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}\right]$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (50073019).

References

Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. \& Wardell, J. L. (2003). Acta Cryst. E59, o244-o246.
Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chertanova, L. \& Pascard, C. (1996). Acta Cryst. B52, 677-684.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Haynes, D. A., Chisholm, J. A., Jones, W. \& Motherwell, W. D. S. (2004). CrystEngComm, 6, 584-588.

organic papers

Hensen, K., Gebhardt, F. \& Bolte, M. (1998). Acta Cryst. C54, 359-361. Hensen, K., Spngenberg, B. \& Bolte, M. (2000). Acta Cryst. C56, 208-210. Pirard, B., Bauudoux, G. \& Durant, F. (1995). Acta Cryst. B51, 103-107. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wang, Y. Q., Wang, Z. M., Liao, C. S. \& Yan, C. H. (1999). Acta Cryst. C55, 1503-1506.

